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Abstract 
In this paper, the topic of integrating visualization tasks to be solved using the Vulkan 

API into virtual environment systems based on OpenGL visualization, is researched. The 
problem of Vulkan-OpenGL hybrid visualization and an approach to its solution, based on a 
modified render-to-texture technique, are described. The technology of constructing an origi-
nal embeddable program shell (VK-capsule) is proposed, which allows hybrid visualization as 
a "black box" to be worked with, obtaining an image in the OpenGL frame buffer at the out-
put. The paper presents the developed structure of the VK-capsule, comprising three program 
blocks (VK-, GL- and I-block), and describes methods and algorithms for their construction. 
Based on proposed technology, methods and algorithms, a VK-capsule for height field visual-
ization task was developed, which utilizes hardware-accelerated ray tracing, Vulkan API sup-
ported by. The approbation of the developed VK-capsule was carried out, which showed that 
proposed solutions are effective and meet the task. The results obtained can be used in virtual 
environment systems, scientific visualization, video simulators, virtual laboratories, educa-
tional applications, etc.  

Keywords: virtual environment systems, Vulkan, OpenGL, interoperability, hybrid vis-
ualization, library, interface, shared video memory, shared semaphore. 

 

1. Introduction 
Currently, open, platform-independent programming interfaces (APIs) become increas-

ingly relevant in the field of real-time 3D computer graphics. One of these is the well-known 
OpenGL standard [1], which is in demand in modern virtual environment systems (VES) [2, 
3], scientific visualization [4, 5], simulators [6], etc. However, despite the intuitive interface 
and thoughtful architecture, this API has a number of ideological limitations restraining its 
further development [7]. Therefore, the Khronos Group industrial consortium, the OpenGL 
standard is supervised by, launched the development of the next-generation graphics and 
computing API - Vulkan [8]. As OpenGL, this API is open and cross-platform, but it has low-
er overhead costs when processing calculations, and also provides much deeper control over 
the GPU and less CPU load. 

From the advantages of Vulkan its main drawback is followed - a low-level interface. 
Many routine tasks, that in OpenGL the driver is responsible for (GPU memory management, 
command queueing, frame buffering, etc.), in Vulkan must be implemented by a developer, 
which significantly complicates graphics programming. Various solutions have been pro-
posed to get around this problem: the V-EZ auxiliary shell [9], pattern-based development 
automation [10], the VulkanSceneGraph wrapper library [11], etc. These solutions are united 
by application development implementing entirely on Vulkan, which is not always allowable. 
In particular, this applies to VES having a developed OpenGL-based visualization subsystem 
(GL-visualizer), interconnected with control and dynamics calculation subsystems [12]. In 
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such cases, it is reasonable to single out separate subtasks that are solved more efficient ly by 
means of new graphics technologies supported by Vulkan (for example, hardware-accelerated 
ray tracing [13]) and integrate them into the GL-visualizer. 

In this paper, the technology and methods to solve this task are proposed, based on the 
construction of an original program shell implementing the combination of Vulkan and 
OpenGL visualization with small-invasive intrusion into the GL-visualizer. Section 2 discuss-
es the problem of combining Vulkan and OpenGL visualization. Section 3 describes proposed 
technology and methods for implementing hybrid visualization. Section 4 presents results of 
approbation of the proposed technology exemplified on height field visualization task [14]. 

2. The problem of combining OpenGL- and Vulkan-
visualization 

Initially, Vulkan was positioned as the successor of OpenGL (glNext), however, ultimate-
ly, this API received a visualization ideology differing from its predecessor. In OpenGL, visu-
alization is based on the rendering context – a special shell that transmits commands to the 
GPU, synchronizes them, and also communicates with the application window. In Vulkan 
ideology there is no such an auxiliary shell, and its functions are performed by a number of 
abstract objects (instance, devices, command queues, etc.), the configuration and synchroni-
zation of which is the responsibility of the developer. Such fundamental differences don't al-
low to do OpenGL- and Vulkan-visualization directly in the same application window, but al-
so don't exclude the ability of collaboration and interaction of both APIs (interoperability). 

The Vulkan-OpenGL interoperability implementation mechanism is shown in the exam-
ples of NVidia [15, 16] and Khronos Group [17]. This mechanism is based on extensions1  re-
leased by the Khronos Group consortium: 

 for OpenGL: EXT_external_objects (GL_EXT_memory_object, 
GL_EXT_semaphore), EXT_external_objects_fd (GL_EXT_memory_object_fd, 
GL_EXT_semaphore_fd), EXT_external_objects_win32 (GL_EXT_memory_object_win32, 
GL_EXT_semaphore_win32) [18]; 

 for Vulkan: VK_KHR_external_memory, VK_KHR_external_ 
memory_capabilities, VK_KHR_external_memory_fd, VK_KHR_external_memory_win32, 
VK_KHR_external_semaphore, VK_KHR_external_semaphore_capabilities, VK_KHR_ 
external_semaphore_fd, VK_KHR_external_semaphore_win32 [19]. 

These extensions introduce new types of objects: 1) shared video memory through which 
Vulkan and OpenGL can exchange data, and 2) shared semaphore - a primitive for synchro-
nizing access of both APIs to shared resources (GPU and shared video memory). The new ob-
jects make the problem of collaborative visualization to be worked around by means of a hy-
brid approach, in which Vulkan-visualization is performed into a texture, and on the 
OpenGL side this texture is rendered to the entire screen. 

The examples [15, 16] show the implementation of a hybrid approach based on the "all in 
one" principle, in which OpenGL- and Vulkan-visualization are closely intertwined in one ap-
plication. This principle allows the feasibility of a hybrid approach to be demonstrated, how-
ever, it is not suitable for embedding in modern VESs with a modular architecture. In the 
technology, proposed in this paper, hybrid visualization is implemented in a separate pro-
gram module with a high-level interface, which is connected to the GL-visualizer with mini-
mal intrusion. 

                                                 
1  A specification containing a description of new functions and constants that extend the capab ilit ies  o f the  

standard's core. Extensions that have passed comprehensive testing and confirmed the stabil ity  o f the ir  wo r k 
are added to the core of the new version of the standard. 



3. Hybrid visualization implementation technology 
In Vulkan ideology, any visualization (both on- and off-screen) is performed by means of 

render-to-texture technique. Suppose, there is an application performing rendering of some 
virtual environment into the texture using Vulkan API (hereinafter VK-rendering). In this 
paper, the task of embedding VK-rendering into the GL-visualizer of VES is considered. The 
proposed technology is based on the construction of an embeddable program shell that "en-
capsulates" VK-rendering and the hybrid approach (hereinafter VK-capsule). From the point 
of the GL-visualizer, the VK-capsule is a "black box" that accepts data as input through an 
agreed set of high-level interface functions, and outputs an image in the OpenGL frame buff-
er (see Figure 1). 

 

 
Fig. 1. VK-capsule structure. 

 
The technology of VK-capsule construction is implemented in a standalone library mod-

ule, dynamically linked to the GL-visualizer, and includes three stages: 1) construction of VK-
block implementing Vulkan-side of hybrid visualization; 2) construction of GL-block im-
plementing OpenGL-side of hybrid visualization; 3) construction of I-block implementing 
an interface for connecting the GL-visualizer to the VK-capsule module (VK- and GL-block). 
Let's consider the methods of implementing these stages. 

3.1. Method of VK-block construction 
Let's introduce the RTT-core term - a set of data structures and algorithms implementing 

VK-rendering. The proposed method is based on creation of a pair of classes: RTT-core "con-
text" (CVkContext) and, derived from it, RTT-core "task" (CVkTask). The method is imple-
mented in three phases, let's consider them in more detail. 

At the first phase (transferring) , the RTT-core components are transferred from the 
source application to CVkContext and CVkTask classes. The basic set of Vulkan objects 
(VkInstance, VkDevice, VkQueue, etc.) needed to implement rendering into a texture is 
transferred to the CVkContext class. A more detailed description of such objects can be found 
in [20]. The basic set, in particular, includes objects used for implementation of: a) screen 
texture into which VK-rendering is performed (hereinafter RTT-texture) and b) synchroniza-
tion of access to RTT-texture and GPU. In this paper, the following designations are intro-
duced for these objects: 

 rttImg - texture object (VkImage) that stores RTT-texture parameters; 
 rttMem - video memory area (VkDeviceMemory) with RTT-texture image; 

 rttSems[2] - a pair of semaphores (VkSemaphore), where rttSems[0] is a semaphore 
of RTT-texture readiness for updating, rttSems[1] is a semaphore of completing RTT-texture 
synthesis on the GPU. 

Data structures and algorithms related directly to the VK-rendering task are transferred 
to the CVkTask class (see an example of such components in [21]). Note, that as a result of 
the first phase, the CVkTask class should include three methods: init, deinit and render - ini-
tialization, deinitialization (returning to the state before initialization) and synthesis of RTT -
texture of the VK-rendering task. 



At the second phase (modification) , rttImg, rttMem and rttSems objects are modi-
fied for hybrid visualization. In particular, the ability to work with external (exportable) 
memory is activated for the rttImg object, and rttMem and rttSems objects are made shared 
(see Section 2). This is implemented by the following algorithm2 : 

1. Before creating Vulkan instance (VkInstance), add the VK_KHR_external_memory-
_capabilities and VK_KHR_external_semaphore_capabilities extensions to the VkIns-
tanceCreateInfo structure. 

2. Before creating Vulkan logical device (VkDevice), add the 
VK_KHR_external_memory, VK_KHR_external_memory_win32, 
VK_KHR_external_semaphore, VK_KHR_external_semaphore_win32 extensions to the 
VkDeviceCreateInfo structure. 

3. Before creating rttImg texture object, fill the VkExternalMemoryImageCreateInfo 
structure and add it to the VkImageCreateInfo structure. 

4. Before creating rttMem video memory area, fill the VkExportMemoryAllocateInfo 
structure and add it to the VkMemoryAllocateInfo structure. 

5. Before creating rttSems semaphores, fill the VkExportSemaphoreCreateInfo struc-
ture and add it to the VkSemaphoreCreateInfo structure of each of rttSems[i]-th semaphore. 

Note, that before executing step 1 of the algorithm, it is necessary to make sure that the 
extensions being added are in the list of supported extensions of the Vulkan instance (see the 
function vkEnumerateInstanceExtensionProperties [8]). For step 2 of the algorithm, it is 
necessary to perform a similar check using the vkEnumerateDeviceExtensionProperties 
function. 

At the third phase (extension) , the interoperability interface (hereinafter IOP-
interface) is implemented, by means of which the OpenGL API gets access to modified RTT-
core objects, in particular, to shared rttMem and rttSems objects. The proposed IOP-
interface is based on the following data structure: 

 

{
;

64 _
;

;
2

};

SIopInterface

HANDLE hRttMem
uint t rttMemSize
HANDLE hRttSems

 

(1) 

where hRttMem is the descriptor of the shared rttMem video memory area; rttMemSize is 
the size of the shared rttMem video memory area; hRttSems[2] are descriptors of shared 
rttSems semaphores. 

Filling the SIopInterface structure is implemented in the exportIop method of the 
CVkContext class using data structures and functions introduced by platform-dependent 
Vulkan API extensions from Section 2. The filling algorithm comprises the following steps: 

1. To get the value of the hRttMem field: 
o fill the fields of the VkMemoryGetWin32HandleInfoKHR structure: memory = 

rttMem, the rest fields - according to the Vulkan specification [8]. 
o get the hRttMem descriptor using the vkGetMemoryWin32HandleKHR function 

and the filled VkMemoryGetWin32HandleInfoKHR structure. 
2. Get the value of the rttMemSize field using the VkMemoryRequirements structure, 

the rttImg object and the vkGetImageMemoryRequirements function. 
3. To get the value of hRttSems-th field: 
Loop by hRttSems[i]-th descriptors 

o fill the fields of the VkSemaphoreGetWin32HandleInfoKHR structure: sema-
phore = rttSems[i], the rest fields - according to the Vulkan specification [8]; 

o get the hRttSems[i] descriptor using the VkSemaphoreGetWin32HandleInfo-
KHR structure and the vkGetSemaphoreWin32HandleKHR function. 

                                                 
2 Descriptions of the data structures given in the algorithm can be found in the Vulkan specifi cation [8]. 



The above algorithm completes the third phase of the VK-block construction. As a result 
of the execution of all three phases, a pair of classes CVkContext and CVkTask, implementing 
the VK-block, are formed. Note, that the obtained CVkContext class is universal, which allows 
the construction of other VK-blocks (VK-capsules) to be significantly simplified. 

3.2. Method of GL-block construction 
The GL-block under consideration in this section implements: the representation of RTT -

texture in OpenGL context (hereinafter GL-texture), synchronization of OpenGL with Vulkan 
and rendering GL-texture into OpenGL frame buffer. To solve these tasks, RTT -texture v isu-
alizer class (CRttVisualizer) is created, which includes the following number of key OpenGL-
objects 

 glTex, glMem - a pair of objects implementing GL-texture, where glTex is texture ob-
ject storing GL-texture parameters, and glMem is video memory area with GL-texture image; 

 glSems[2] - representations of a pair of rttSems semaphores (see Section 3.1) in 
OpenGL context (hereinafter GL-semaphores); 

 rectVao - a vertex array object (VAO) that stores a polygonal model of a screen rec-
tangle (positions and texture coordinates of vertices); 

 rectRenderer - a shader program that renders textured rectVao model of screen rec-
tangle into OpenGL frame buffer. 

Based on the given member data, four key methods are implemented in the CRttVisualiz-
er class: init and deinit - initialization and deinitialization of RTT-texture visualizer, as well 
as prerender and postrender - methods called before and after VK-block’s render method 
(see Section 3.1). Let's consider them in more detail. 

The init and deinit methods. The task of the init method is to create the OpenGL-
objects listed above in video memory. GL-texture and GL-semaphore objects are created us-
ing OpenGL extension functions from Section 2 and the filled object of the structure (1) 
(hereinafter the iop object) passed to the init method as an argument. This implements the 
following algorithm 

1. For GL- texture: 
o create glMem object of video memory area using the glCreateMemoryObjects-

EXT function; 
o associate glMem object with shared rttMem video memory area of RTT-texture 

(see Section 3.1) using its descriptor iop.hRttMem, size iop.rttMemSize and the 
glImportMemoryWin32HandleEXT  function; 

o create glTex texture object using the glCreateTextures function; 
o bind glTex texture object to glMem video memory area object using the glTex-

tureStorageMem2DEXT  function. 
2. For GL- semaphores: 
Loop by glSems[i]-th objects 

o create glSems[i]th object using the glGenSemaphoresEXT  function; 
o associate glSems[i]th object with shared rttSems[i]th semaphore (see Section 

3.1) using its descriptor iop.hRttSems[i] and the glImportSema-
phoreWin32HandleEXT function. 

The construction of rectVao model and rectRenderer shader program is typical and in-
cludes the creation of a pair of vertex buffer objects (VBO) storing positions and texture co-
ordinates of screen rectangle vertices, as well as a pair of shader subroutines (vertex and 
fragment). 

The task of the deinit method is to delete the OpenGL objects listed above from the video 
memory. As with the creation, OpenGL extension functions from Section 2 are used to delete  
GL-texture and GL-semaphores. In particular, the glDeleteMemoryObjectsEXT  function is 
used for glMem object, and glDeleteSemaphoresEXT  - for glSems objects. 

The prerender and postrender methods work in conjunction with the VK-block’s 
render method and are used to synthesize a hybrid visualization frame. To solve this task, it 



is necessary to synchronize the access of two APIs to shared resources (GPU and video 
memory). If this is not done, the APIs will interfere with each other (for example, Vulkan is 
still calculating RTT-texture, and OpenGL is already starting to render it on the screen), and 
the result will be unpredictable. Synchronization is implemented using the GL-semaphores 
introduced above, which can only be switched via the GPU to the signal or standby state (de-
fault value). GL-semaphores are controlled by both APIs: on the Vulkan side - through 
rttSems objects, on the OpenGL side - through glSems objects. Keeping this in mind, the fol-
lowing algorithm of hybrid visualization frame synthesis is formed 

1. GL-block (the prerender method): 
o set glSems[0] object to the signal state (RTT-texture readiness for updating) us-

ing the glSignalSemaphoreEXT . 
2. VK-block (the render method): 

o wait for a signal from rttSems[0] object; 
o perform RTT-texture synthesis; 
o set rttSems[1] object to the signal state (completing RTT-texture synthesis on the 

GPU). 
3. GL -block (the postrender method): 

o wait for a signal from glSems[1] object using the glWaitSemaphoreEXT  function; 
o make current the glTex texture object of GL-texture; 
o visualize the rectVao model of a screen rectangle, covered with GL-texture, using 

the rectRenderer shader program. 
Note, that in steps 2 and 3 of the algorithm, after receiving signals, rttSems[0] and 

glSems[1] objects automatically reset GL-semaphores to the standby states, which allows 
them to be reused on the next frame of hybrid visualization. 

3.3. Method of I-block construction 
As noted in Section 3, the I-block implements the interface for connecting the GL-

visualizer to VK-capsule library module. The proposed method of I-block construction in-
cludes the creation of two interfaces: the internal, the VK-capsule operation is controlled via, 
and the external (exported), the GL-visualizer and the VK-capsule module are communicated 
via. Let's consider them in more detail. 

The internal interface is created based on a pair of classes: interface specification 
(IVkCapsule) and, derived from it, interface implementation class (CVkCapsule). The 
IVkCapsule class is abstract and contains only a set of pure virtual functions of the internal 
interface (see the example in Figure 2). The CVkCapsule class contains implementations of 
these virtual functions. 

The set of virtual functions of the internal interface comprises the basic and user parts. 
The basic part includes the functions of initialization, visualization and deinitialization of the 
VK-capsule: 

 init - allocates the memory for objects of the CVkTask and CRttVisualizer classes 
(hereinafter pVkBlock and pGlBlock objects), initializes these objects and interconnects them 
via the IOP-interface (see Sections 3.1, 3.2); 

 render - implements the algorithm of hybrid visualization frame synthesis from Sec-
tion 3.2 using pVkBlock and pGlBlock objects; 

 deinit - deinitializes the pVkBlock and pGlBlock objects and frees the memory allocat-
ed for them. 

The user part comprises interface functions of the VK-rendering task (the CVkTask class, 
see Section 3.1). In general, the list of such functions is quite extensive and includes functions 
for setting positions and orientations of scene objects; controlling virtual camera and light 
sources; processing window, keyboard, mouse events, etc. 

 



 
Fig. 2.  An example of IVkCapsule base class of the internal interface. 

 
The external interface is created based on a pair of exportable global functions 

__ ( ) * ();
__ ( ) ( ** );

declspec dllexport IVkCapsule vkCapsuleCreate
declspec dllexport void vkCapsuleDestroy IVkCapsule _ppVkCapsule  

(2) 

where vkCapsuleCreate, vkCapsuleDestroy are functions for creating and destroying an ob-
ject of the CVkCapsule class, and __declspec(dllexport) is a keyword pointing out the com-
piler that the function will be exported from the library. 

Binding of the external interface to the internal interface is carried out inside the vkCap-
suleCreate function when creating an object of the CVkCapsule class: 

IVkCapsule* pVkCapsule = new CVkCapsule();  (3) 

It can be seen from expression (3) that the pVkCapsule pointer to the created object of 
the CVkCapsule class has the type of the IVkCapsule* base class. In fact, pVkCapsule is a 
pointer to virtual function table of the IVkCapsule base class, created at VK-capsule module 
compilation stage. After executing the expression (3), this table is filled by addresses of the 
corresponding virtual functions of the created object of the derived CVkCapsule class (the so-
called dynamic polymorphism or late binding). As a result, a pVkCapsule pointer is formed, 
which provides access to all functions of the VK-capsule's internal interface. 

As the result, the I-block comprising the pair of classes {IVkCapsule, CVkCapsule} and 
the pair of functions {vkCapsuleCreate, vkCapsuleDestroy} is created, which completes VK-
capsule construction and adds a "gateway" to it to connect to the GL-visualizer. In this paper, 
such a connection is implemented using the WinAPI based on explicit dynamic linking of ex-
ecutable module of the GL-visualizer with VK-capsule library via developed external interface 
(2). Below, exemplified on a VK-capsule with basic internal interface, connection algorithm is 
shown: 

1. At the stage of GL-visualizer initialization: 
o load VK-capsule library into GL-visualizer process address space using the 

LoadLibrary function; 
o get the addresses of the vkCapsuleCreate and vkCapsuleDestroy functions of the 

external interface of VK-capsule library using the GetProcAddress function; 
o create a pVkCapsule object of the internal interface of VK-capsule library using 

the vkCapsuleCreate function; 
o call the init method of the pVkCapsule object. 

2. At the stage of GL-visualizer frame formation: 
o call the render method of the pVkCapsule object. 



3. At the stage of GL-visualizer deinitialization: 
o call the deinit method of the pVkCapsule object; 
o destroy the pVkCapsule object using the vkCapsuleDestroy function; 
o unload VK-capsule library from GL-visualizer process address space using the 

FreeLibrary function. 
Exemplified on the above algorithm, it can be seen that connecting the VK-capsule to the 

GL-visualizer is minimally invasive. In particular, to work with a VK-capsule, regardless of 
the task it solves, the addresses of only two functions (vkCapsuleCreate and vkCap-
suleDestroy, see stage 1 of the algorithm) are required to obtain. This greatly simplifies the 
process of embedding VK-capsule into the GL-visualizer and their further maintenance. 

4. Results and conclusions 
Based on the proposed technology, methods and algorithms, a VK-capsule was developed 

that implements hybrid visualization of a detailed height field, based on hardware-
accelerated ray tracing [14]. The VK-capsule is implemented in C++ using the GLSL shading 
programming language, Vulkan and OpenGL APIs. A prototype of GL-visualizer was also cre-
ated, providing the creation of an OpenGL window and context, into which the developed 
VK-capsule was embedded. The created complex was tested, including hybrid visualization of 
the Puget Sound height field from the study [14]. Visualization was performed at Full HD 
screen resolution using NVidia GeForce RTX 2080 graphics card (Vulkan v. 1.3.204.1, NVidia 
DCH v. 512.59). During the visualization, interactive control of observer and light source mo-
tion was performed, as well as enabling/disabling the calculation of height field self-
shadowing. Figure 3 shows an example of hybrid visualization of 8Kx8K Puget Sound height 
field with self-shadowing enabled. The conducted approbation confirmed the adequacy of the 
proposed technology to the task and the possibility of its effective application in software sys-
tems performing complex interactive visualization. 

 

 
Fig. 3. An example of hybrid visualization of the Puget Sound height field using the developed 

technology. 
 
As a result of the research, the following conclusions were obtained: 
1. The proposed solution contains a number of universal components of hybrid visuali-

zation (СVkContext and CRttVisualizer classes, external interface (2)), which significantly 
simplify the construction of VK-capsules. 

2. The proposed solution preserves the possibility of the GL-visualizer working without 
the VK-capsule library (due to the explicit dynamic linking of modules). T his allows effective 
software package configurations for specific tasks (in particular, where only OpenGL visuali-
zation is needed) to be created, as well as develop modules independently of each other (in 



the presence of the agreed internal interface of the VK-capsule). This is especially demanded 
when it is required to implement sophisticated modern graphics technologies in the VK-
capsule, such as hardware-accelerated ray tracing. 

3. Thanks to the developed external interface (2) of the VK-capsule, the need to imple-
ment on the GL-visualizer side the routine "import stuff" (creating pointers, obtaining ad-
dresses) for each function of the VK-capsule’s internal interface is eliminated. This makes it 
comfortable to embed VK-capsules with an extensive internal interface and facilitates further 
maintenance and scaling of the software complex. 
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