
Scientific Visualization, 2023, volume 15, number 3, pages 7 - 17, DOI: 10.26583/sv.15.3.02

Hybrid Visualization with Vulkan-OpenGL: Technology and

Methods of Implementation in Virtual Environment Systems

P.Yu. Timokhin 1 , M.V. Mikhaylyuk2

Federal State Institution "Scientific Research Institute for System Analysis of the Russian

Academy of Sciences" (SRISA RAS), Moscow, Russia

1 ORCID: 0000-0002-0718-1436, webpismo@yahoo.de
2 ORCID: 0000-0002-7793-080X, mix@niisi.ras.ru

Abstract
In this paper, the topic of integrating visualization tasks to be solved using the Vulkan

API into virtual environment systems based on OpenGL visualization, is researched. The
problem of Vulkan-OpenGL hybrid visualization and an approach to its solution, based on a
modified render-to-texture technique, are described. The technology of constructing an origi-
nal embeddable program shell (VK-capsule) is proposed, which allows hybrid visualization as
a "black box" to be worked with, obtaining an image in the OpenGL frame buffer at the out-
put. The paper presents the developed structure of the VK-capsule, comprising three program
blocks (VK-, GL- and I-block), and describes methods and algorithms for their construction.
Based on proposed technology, methods and algorithms, a VK-capsule for height field visual-
ization task was developed, which utilizes hardware-accelerated ray tracing, Vulkan API sup-
ported by. The approbation of the developed VK-capsule was carried out, which showed that
proposed solutions are effective and meet the task. The results obtained can be used in virtual
environment systems, scientific visualization, video simulators, virtual laboratories, educa-
tional applications, etc.

Keywords: virtual environment systems, Vulkan, OpenGL, interoperability, hybrid vis-
ualization, library, interface, shared video memory, shared semaphore.

1. Introduction
Currently, open, platform-independent programming interfaces (APIs) become increas-

ingly relevant in the field of real-time 3D computer graphics. One of these is the well-known
OpenGL standard [1], which is in demand in modern virtual environment systems (VES) [2,
3], scientific visualization [4, 5], simulators [6], etc. However, despite the intuitive interface
and thoughtful architecture, this API has a number of ideological limitations restraining its
further development [7]. Therefore, the Khronos Group industrial consortium, the OpenGL
standard is supervised by, launched the development of the next-generation graphics and
computing API - Vulkan [8]. As OpenGL, this API is open and cross-platform, but it has low-
er overhead costs when processing calculations, and also provides much deeper control over
the GPU and less CPU load.

From the advantages of Vulkan its main drawback is followed - a low-level interface.
Many routine tasks, that in OpenGL the driver is responsible for (GPU memory management,
command queueing, frame buffering, etc.), in Vulkan must be implemented by a developer,
which significantly complicates graphics programming. Various solutions have been pro-
posed to get around this problem: the V-EZ auxiliary shell [9], pattern-based development
automation [10], the VulkanSceneGraph wrapper library [11], etc. These solutions are united
by application development implementing entirely on Vulkan, which is not always allowable.
In particular, this applies to VES having a developed OpenGL-based visualization subsystem
(GL-visualizer), interconnected with control and dynamics calculation subsystems [12]. In

https://doi.org/10.26583/sv.15.3.02
mailto:webpismo@yahoo.de
mailto:mix@niisi.ras.ru

such cases, it is reasonable to single out separate subtasks that are solved more efficient ly by
means of new graphics technologies supported by Vulkan (for example, hardware-accelerated
ray tracing [13]) and integrate them into the GL-visualizer.

In this paper, the technology and methods to solve this task are proposed, based on the
construction of an original program shell implementing the combination of Vulkan and
OpenGL visualization with small-invasive intrusion into the GL-visualizer. Section 2 discuss-
es the problem of combining Vulkan and OpenGL visualization. Section 3 describes proposed
technology and methods for implementing hybrid visualization. Section 4 presents results of
approbation of the proposed technology exemplified on height field visualization task [14].

2. The problem of combining OpenGL- and Vulkan-
visualization

Initially, Vulkan was positioned as the successor of OpenGL (glNext), however, ultimate-
ly, this API received a visualization ideology differing from its predecessor. In OpenGL, visu-
alization is based on the rendering context – a special shell that transmits commands to the
GPU, synchronizes them, and also communicates with the application window. In Vulkan
ideology there is no such an auxiliary shell, and its functions are performed by a number of
abstract objects (instance, devices, command queues, etc.), the configuration and synchroni-
zation of which is the responsibility of the developer. Such fundamental differences don't al-
low to do OpenGL- and Vulkan-visualization directly in the same application window, but al-
so don't exclude the ability of collaboration and interaction of both APIs (interoperability).

The Vulkan-OpenGL interoperability implementation mechanism is shown in the exam-
ples of NVidia [15, 16] and Khronos Group [17]. This mechanism is based on extensions1 re-
leased by the Khronos Group consortium:

 for OpenGL: EXT_external_objects (GL_EXT_memory_object,
GL_EXT_semaphore), EXT_external_objects_fd (GL_EXT_memory_object_fd,
GL_EXT_semaphore_fd), EXT_external_objects_win32 (GL_EXT_memory_object_win32,
GL_EXT_semaphore_win32) [18];

 for Vulkan: VK_KHR_external_memory, VK_KHR_external_
memory_capabilities, VK_KHR_external_memory_fd, VK_KHR_external_memory_win32,
VK_KHR_external_semaphore, VK_KHR_external_semaphore_capabilities, VK_KHR_
external_semaphore_fd, VK_KHR_external_semaphore_win32 [19].

These extensions introduce new types of objects: 1) shared video memory through which
Vulkan and OpenGL can exchange data, and 2) shared semaphore - a primitive for synchro-
nizing access of both APIs to shared resources (GPU and shared video memory). The new ob-
jects make the problem of collaborative visualization to be worked around by means of a hy-
brid approach, in which Vulkan-visualization is performed into a texture, and on the
OpenGL side this texture is rendered to the entire screen.

The examples [15, 16] show the implementation of a hybrid approach based on the "all in
one" principle, in which OpenGL- and Vulkan-visualization are closely intertwined in one ap-
plication. This principle allows the feasibility of a hybrid approach to be demonstrated, how-
ever, it is not suitable for embedding in modern VESs with a modular architecture. In the
technology, proposed in this paper, hybrid visualization is implemented in a separate pro-
gram module with a high-level interface, which is connected to the GL-visualizer with mini-
mal intrusion.

1 A specification containing a description of new functions and constants that extend the capab ilit ies o f the

standard's core. Extensions that have passed comprehensive testing and confirmed the stabil ity o f the ir wo r k
are added to the core of the new version of the standard.

3. Hybrid visualization implementation technology
In Vulkan ideology, any visualization (both on- and off-screen) is performed by means of

render-to-texture technique. Suppose, there is an application performing rendering of some
virtual environment into the texture using Vulkan API (hereinafter VK-rendering). In this
paper, the task of embedding VK-rendering into the GL-visualizer of VES is considered. The
proposed technology is based on the construction of an embeddable program shell that "en-
capsulates" VK-rendering and the hybrid approach (hereinafter VK-capsule). From the point
of the GL-visualizer, the VK-capsule is a "black box" that accepts data as input through an
agreed set of high-level interface functions, and outputs an image in the OpenGL frame buff-
er (see Figure 1).

Fig. 1. VK-capsule structure.

The technology of VK-capsule construction is implemented in a standalone library mod-

ule, dynamically linked to the GL-visualizer, and includes three stages: 1) construction of VK-
block implementing Vulkan-side of hybrid visualization; 2) construction of GL-block im-
plementing OpenGL-side of hybrid visualization; 3) construction of I-block implementing
an interface for connecting the GL-visualizer to the VK-capsule module (VK- and GL-block).
Let's consider the methods of implementing these stages.

3.1. Method of VK-block construction
Let's introduce the RTT-core term - a set of data structures and algorithms implementing

VK-rendering. The proposed method is based on creation of a pair of classes: RTT-core "con-
text" (CVkContext) and, derived from it, RTT-core "task" (CVkTask). The method is imple-
mented in three phases, let's consider them in more detail.

At the first phase (transferring) , the RTT-core components are transferred from the
source application to CVkContext and CVkTask classes. The basic set of Vulkan objects
(VkInstance, VkDevice, VkQueue, etc.) needed to implement rendering into a texture is
transferred to the CVkContext class. A more detailed description of such objects can be found
in [20]. The basic set, in particular, includes objects used for implementation of: a) screen
texture into which VK-rendering is performed (hereinafter RTT-texture) and b) synchroniza-
tion of access to RTT-texture and GPU. In this paper, the following designations are intro-
duced for these objects:

 rttImg - texture object (VkImage) that stores RTT-texture parameters;
 rttMem - video memory area (VkDeviceMemory) with RTT-texture image;

 rttSems[2] - a pair of semaphores (VkSemaphore), where rttSems[0] is a semaphore
of RTT-texture readiness for updating, rttSems[1] is a semaphore of completing RTT-texture
synthesis on the GPU.

Data structures and algorithms related directly to the VK-rendering task are transferred
to the CVkTask class (see an example of such components in [21]). Note, that as a result of
the first phase, the CVkTask class should include three methods: init, deinit and render - ini-
tialization, deinitialization (returning to the state before initialization) and synthesis of RTT -
texture of the VK-rendering task.

At the second phase (modification) , rttImg, rttMem and rttSems objects are modi-
fied for hybrid visualization. In particular, the ability to work with external (exportable)
memory is activated for the rttImg object, and rttMem and rttSems objects are made shared
(see Section 2). This is implemented by the following algorithm2 :

1. Before creating Vulkan instance (VkInstance), add the VK_KHR_external_memory-
_capabilities and VK_KHR_external_semaphore_capabilities extensions to the VkIns-
tanceCreateInfo structure.

2. Before creating Vulkan logical device (VkDevice), add the
VK_KHR_external_memory, VK_KHR_external_memory_win32,
VK_KHR_external_semaphore, VK_KHR_external_semaphore_win32 extensions to the
VkDeviceCreateInfo structure.

3. Before creating rttImg texture object, fill the VkExternalMemoryImageCreateInfo
structure and add it to the VkImageCreateInfo structure.

4. Before creating rttMem video memory area, fill the VkExportMemoryAllocateInfo
structure and add it to the VkMemoryAllocateInfo structure.

5. Before creating rttSems semaphores, fill the VkExportSemaphoreCreateInfo struc-
ture and add it to the VkSemaphoreCreateInfo structure of each of rttSems[i]-th semaphore.

Note, that before executing step 1 of the algorithm, it is necessary to make sure that the
extensions being added are in the list of supported extensions of the Vulkan instance (see the
function vkEnumerateInstanceExtensionProperties [8]). For step 2 of the algorithm, it is
necessary to perform a similar check using the vkEnumerateDeviceExtensionProperties
function.

At the third phase (extension) , the interoperability interface (hereinafter IOP-
interface) is implemented, by means of which the OpenGL API gets access to modified RTT-
core objects, in particular, to shared rttMem and rttSems objects. The proposed IOP-
interface is based on the following data structure:

{
;

64 _
;

;
2

};

SIopInterface

HANDLE hRttMem
uint t rttMemSize
HANDLE hRttSems

(1)

where hRttMem is the descriptor of the shared rttMem video memory area; rttMemSize is
the size of the shared rttMem video memory area; hRttSems[2] are descriptors of shared
rttSems semaphores.

Filling the SIopInterface structure is implemented in the exportIop method of the
CVkContext class using data structures and functions introduced by platform-dependent
Vulkan API extensions from Section 2. The filling algorithm comprises the following steps:

1. To get the value of the hRttMem field:
o fill the fields of the VkMemoryGetWin32HandleInfoKHR structure: memory =

rttMem, the rest fields - according to the Vulkan specification [8].
o get the hRttMem descriptor using the vkGetMemoryWin32HandleKHR function

and the filled VkMemoryGetWin32HandleInfoKHR structure.
2. Get the value of the rttMemSize field using the VkMemoryRequirements structure,

the rttImg object and the vkGetImageMemoryRequirements function.
3. To get the value of hRttSems-th field:
Loop by hRttSems[i]-th descriptors

o fill the fields of the VkSemaphoreGetWin32HandleInfoKHR structure: sema-
phore = rttSems[i], the rest fields - according to the Vulkan specification [8];

o get the hRttSems[i] descriptor using the VkSemaphoreGetWin32HandleInfo-
KHR structure and the vkGetSemaphoreWin32HandleKHR function.

2 Descriptions of the data structures given in the algorithm can be found in the Vulkan specifi cation [8].

The above algorithm completes the third phase of the VK-block construction. As a result
of the execution of all three phases, a pair of classes CVkContext and CVkTask, implementing
the VK-block, are formed. Note, that the obtained CVkContext class is universal, which allows
the construction of other VK-blocks (VK-capsules) to be significantly simplified.

3.2. Method of GL-block construction
The GL-block under consideration in this section implements: the representation of RTT -

texture in OpenGL context (hereinafter GL-texture), synchronization of OpenGL with Vulkan
and rendering GL-texture into OpenGL frame buffer. To solve these tasks, RTT -texture v isu-
alizer class (CRttVisualizer) is created, which includes the following number of key OpenGL-
objects

 glTex, glMem - a pair of objects implementing GL-texture, where glTex is texture ob-
ject storing GL-texture parameters, and glMem is video memory area with GL-texture image;

 glSems[2] - representations of a pair of rttSems semaphores (see Section 3.1) in
OpenGL context (hereinafter GL-semaphores);

 rectVao - a vertex array object (VAO) that stores a polygonal model of a screen rec-
tangle (positions and texture coordinates of vertices);

 rectRenderer - a shader program that renders textured rectVao model of screen rec-
tangle into OpenGL frame buffer.

Based on the given member data, four key methods are implemented in the CRttVisualiz-
er class: init and deinit - initialization and deinitialization of RTT-texture visualizer, as well
as prerender and postrender - methods called before and after VK-block’s render method
(see Section 3.1). Let's consider them in more detail.

The init and deinit methods. The task of the init method is to create the OpenGL-
objects listed above in video memory. GL-texture and GL-semaphore objects are created us-
ing OpenGL extension functions from Section 2 and the filled object of the structure (1)
(hereinafter the iop object) passed to the init method as an argument. This implements the
following algorithm

1. For GL- texture:
o create glMem object of video memory area using the glCreateMemoryObjects-

EXT function;
o associate glMem object with shared rttMem video memory area of RTT-texture

(see Section 3.1) using its descriptor iop.hRttMem, size iop.rttMemSize and the
glImportMemoryWin32HandleEXT function;

o create glTex texture object using the glCreateTextures function;
o bind glTex texture object to glMem video memory area object using the glTex-

tureStorageMem2DEXT function.
2. For GL- semaphores:
Loop by glSems[i]-th objects

o create glSems[i]th object using the glGenSemaphoresEXT function;
o associate glSems[i]th object with shared rttSems[i]th semaphore (see Section

3.1) using its descriptor iop.hRttSems[i] and the glImportSema-
phoreWin32HandleEXT function.

The construction of rectVao model and rectRenderer shader program is typical and in-
cludes the creation of a pair of vertex buffer objects (VBO) storing positions and texture co-
ordinates of screen rectangle vertices, as well as a pair of shader subroutines (vertex and
fragment).

The task of the deinit method is to delete the OpenGL objects listed above from the video
memory. As with the creation, OpenGL extension functions from Section 2 are used to delete
GL-texture and GL-semaphores. In particular, the glDeleteMemoryObjectsEXT function is
used for glMem object, and glDeleteSemaphoresEXT - for glSems objects.

The prerender and postrender methods work in conjunction with the VK-block’s
render method and are used to synthesize a hybrid visualization frame. To solve this task, it

is necessary to synchronize the access of two APIs to shared resources (GPU and video
memory). If this is not done, the APIs will interfere with each other (for example, Vulkan is
still calculating RTT-texture, and OpenGL is already starting to render it on the screen), and
the result will be unpredictable. Synchronization is implemented using the GL-semaphores
introduced above, which can only be switched via the GPU to the signal or standby state (de-
fault value). GL-semaphores are controlled by both APIs: on the Vulkan side - through
rttSems objects, on the OpenGL side - through glSems objects. Keeping this in mind, the fol-
lowing algorithm of hybrid visualization frame synthesis is formed

1. GL-block (the prerender method):
o set glSems[0] object to the signal state (RTT-texture readiness for updating) us-

ing the glSignalSemaphoreEXT .
2. VK-block (the render method):

o wait for a signal from rttSems[0] object;
o perform RTT-texture synthesis;
o set rttSems[1] object to the signal state (completing RTT-texture synthesis on the

GPU).
3. GL -block (the postrender method):

o wait for a signal from glSems[1] object using the glWaitSemaphoreEXT function;
o make current the glTex texture object of GL-texture;
o visualize the rectVao model of a screen rectangle, covered with GL-texture, using

the rectRenderer shader program.
Note, that in steps 2 and 3 of the algorithm, after receiving signals, rttSems[0] and

glSems[1] objects automatically reset GL-semaphores to the standby states, which allows
them to be reused on the next frame of hybrid visualization.

3.3. Method of I-block construction
As noted in Section 3, the I-block implements the interface for connecting the GL-

visualizer to VK-capsule library module. The proposed method of I-block construction in-
cludes the creation of two interfaces: the internal, the VK-capsule operation is controlled via,
and the external (exported), the GL-visualizer and the VK-capsule module are communicated
via. Let's consider them in more detail.

The internal interface is created based on a pair of classes: interface specification
(IVkCapsule) and, derived from it, interface implementation class (CVkCapsule). The
IVkCapsule class is abstract and contains only a set of pure virtual functions of the internal
interface (see the example in Figure 2). The CVkCapsule class contains implementations of
these virtual functions.

The set of virtual functions of the internal interface comprises the basic and user parts.
The basic part includes the functions of initialization, visualization and deinitialization of the
VK-capsule:

 init - allocates the memory for objects of the CVkTask and CRttVisualizer classes
(hereinafter pVkBlock and pGlBlock objects), initializes these objects and interconnects them
via the IOP-interface (see Sections 3.1, 3.2);

 render - implements the algorithm of hybrid visualization frame synthesis from Sec-
tion 3.2 using pVkBlock and pGlBlock objects;

 deinit - deinitializes the pVkBlock and pGlBlock objects and frees the memory allocat-
ed for them.

The user part comprises interface functions of the VK-rendering task (the CVkTask class,
see Section 3.1). In general, the list of such functions is quite extensive and includes functions
for setting positions and orientations of scene objects; controlling virtual camera and light
sources; processing window, keyboard, mouse events, etc.

Fig. 2. An example of IVkCapsule base class of the internal interface.

The external interface is created based on a pair of exportable global functions

__ () * ();
__ () (**);

declspec dllexport IVkCapsule vkCapsuleCreate
declspec dllexport void vkCapsuleDestroy IVkCapsule _ppVkCapsule

(2)

where vkCapsuleCreate, vkCapsuleDestroy are functions for creating and destroying an ob-
ject of the CVkCapsule class, and __declspec(dllexport) is a keyword pointing out the com-
piler that the function will be exported from the library.

Binding of the external interface to the internal interface is carried out inside the vkCap-
suleCreate function when creating an object of the CVkCapsule class:

IVkCapsule* pVkCapsule = new CVkCapsule(); (3)

It can be seen from expression (3) that the pVkCapsule pointer to the created object of
the CVkCapsule class has the type of the IVkCapsule* base class. In fact, pVkCapsule is a
pointer to virtual function table of the IVkCapsule base class, created at VK-capsule module
compilation stage. After executing the expression (3), this table is filled by addresses of the
corresponding virtual functions of the created object of the derived CVkCapsule class (the so-
called dynamic polymorphism or late binding). As a result, a pVkCapsule pointer is formed,
which provides access to all functions of the VK-capsule's internal interface.

As the result, the I-block comprising the pair of classes {IVkCapsule, CVkCapsule} and
the pair of functions {vkCapsuleCreate, vkCapsuleDestroy} is created, which completes VK-
capsule construction and adds a "gateway" to it to connect to the GL-visualizer. In this paper,
such a connection is implemented using the WinAPI based on explicit dynamic linking of ex-
ecutable module of the GL-visualizer with VK-capsule library via developed external interface
(2). Below, exemplified on a VK-capsule with basic internal interface, connection algorithm is
shown:

1. At the stage of GL-visualizer initialization:
o load VK-capsule library into GL-visualizer process address space using the

LoadLibrary function;
o get the addresses of the vkCapsuleCreate and vkCapsuleDestroy functions of the

external interface of VK-capsule library using the GetProcAddress function;
o create a pVkCapsule object of the internal interface of VK-capsule library using

the vkCapsuleCreate function;
o call the init method of the pVkCapsule object.

2. At the stage of GL-visualizer frame formation:
o call the render method of the pVkCapsule object.

3. At the stage of GL-visualizer deinitialization:
o call the deinit method of the pVkCapsule object;
o destroy the pVkCapsule object using the vkCapsuleDestroy function;
o unload VK-capsule library from GL-visualizer process address space using the

FreeLibrary function.
Exemplified on the above algorithm, it can be seen that connecting the VK-capsule to the

GL-visualizer is minimally invasive. In particular, to work with a VK-capsule, regardless of
the task it solves, the addresses of only two functions (vkCapsuleCreate and vkCap-
suleDestroy, see stage 1 of the algorithm) are required to obtain. This greatly simplifies the
process of embedding VK-capsule into the GL-visualizer and their further maintenance.

4. Results and conclusions
Based on the proposed technology, methods and algorithms, a VK-capsule was developed

that implements hybrid visualization of a detailed height field, based on hardware-
accelerated ray tracing [14]. The VK-capsule is implemented in C++ using the GLSL shading
programming language, Vulkan and OpenGL APIs. A prototype of GL-visualizer was also cre-
ated, providing the creation of an OpenGL window and context, into which the developed
VK-capsule was embedded. The created complex was tested, including hybrid visualization of
the Puget Sound height field from the study [14]. Visualization was performed at Full HD
screen resolution using NVidia GeForce RTX 2080 graphics card (Vulkan v. 1.3.204.1, NVidia
DCH v. 512.59). During the visualization, interactive control of observer and light source mo-
tion was performed, as well as enabling/disabling the calculation of height field self-
shadowing. Figure 3 shows an example of hybrid visualization of 8Kx8K Puget Sound height
field with self-shadowing enabled. The conducted approbation confirmed the adequacy of the
proposed technology to the task and the possibility of its effective application in software sys-
tems performing complex interactive visualization.

Fig. 3. An example of hybrid visualization of the Puget Sound height field using the developed

technology.

As a result of the research, the following conclusions were obtained:
1. The proposed solution contains a number of universal components of hybrid visuali-

zation (СVkContext and CRttVisualizer classes, external interface (2)), which significantly
simplify the construction of VK-capsules.

2. The proposed solution preserves the possibility of the GL-visualizer working without
the VK-capsule library (due to the explicit dynamic linking of modules). T his allows effective
software package configurations for specific tasks (in particular, where only OpenGL visuali-
zation is needed) to be created, as well as develop modules independently of each other (in

the presence of the agreed internal interface of the VK-capsule). This is especially demanded
when it is required to implement sophisticated modern graphics technologies in the VK-
capsule, such as hardware-accelerated ray tracing.

3. Thanks to the developed external interface (2) of the VK-capsule, the need to imple-
ment on the GL-visualizer side the routine "import stuff" (creating pointers, obtaining ad-
dresses) for each function of the VK-capsule’s internal interface is eliminated. This makes it
comfortable to embed VK-capsules with an extensive internal interface and facilitates further
maintenance and scaling of the software complex.

5. Acknowledgements
The publication is made within the state task of Federal State Institution “Scientific Re-

search Institute for System Analysis of the Russian Academy of Sciences” on “Carrying out
basic scientific researches (47 GP)” on topic No. FNEF-2022-0012 “Virtual environment sys-
tems: technologies, methods and algorithms of mathematical modeling and visualization”.

References
1. Segal M., Akeley K. The OpenGL Graphics System: A Specification (Version 4.6 (Core

Profile) - May 5, 2022) (https://registry.khronos.org/OpenGL/specs/gl/glspec46.core.pdf)
2. Mikhaylyuk M.V., Maltsev A.V., Timokhin P.Y., Strashnov E.V., Kryuchkov B.I., Usov

V.M. The VirSim Virtual Environment System for the Simulation Complexes of Cosmonaut
Training // Scientific Journal Manned Spaceflight. – 2020. – No 4(37). – pp. 72–95. [in Rus-
sian] (doi: 10.34131/MSF.20.4.72-95)

(http://www.gctc.ru/media/files/Periodicheskie_izdaniya/ppk_2020_4_total_37/5_sta
t.a_mihailuk_pq.pdf)

3. UNIGINE 2 Engine. Real-time 3D engine for enterprise and technology enthusiasts
(https://unigine.com/)

4. Zakharova A.A., Korostelyov D.A., Podvesovskii A.G., Bondarev A.E., Galaktionov
V.A. Generalized Computational Experiment State Analysis Using Three-Dimensional Visual
Maps // Scientific Visualization. – 2022. – Vol. 14, No. 4. – pp. 12–23 (doi:
10.26583/sv.14.4.02) (http://sv-journal.org/2022-4/02/en.pdf)

5. ParaView. Solutions (https://www.paraview.org/solutions/)
6. Barladian B.Kh., Voloboy A.G., Shapiro L.Z., Deryabin N.B., Valiev I.V., Andreev S.V.,

Solodelov Yu.A., Galaktionov V.A. Safety critical visualization of the flight instruments and
the environment for pilot cockpit // Scientific Visualization. – 2021. – Vol. 13, No. 1. – pp.
124–137 (doi: 10.26583/sv.13.1.09) (https://sv-journal.org/2021-1/09/en.pdf)

7. Shiraef J. An Exploratory Study of High Performance Graphics Application Pro-
gramming Interfaces // Thesis for the Master’s degree in Computer Science. – The University
of Tennessee at Chattanooga. – 2016 (https://core.ac.uk/download/pdf/51197608.pdf)

8. Vulkan 1.3.238 - A Specification (with all registered Vulkan extensions), The Khronos
Vulkan Working Group. – 2022 (https://www.khronos.org/registry/vulkan/specs/1.3-
extensions/pdf/vkspec.pdf)

9. V-EZ API Documentation (https://gpuopen-librariesandsdks.github.io/V-EZ/)
10. Frolov V., Sanzharov V., Galaktionov V., Scherbakov A. An Auto-Programming Ap-

proach to Vulkan // Proceedings of the 31th International Conference on Computer Graphics
and Vision (GraphiCon 2021). – 2021. – Vol. 3027. – pp. 150–165 (doi: 10.20948/graphicon-
2021-3027-150-165) (https://ceur-ws.org/Vol-3027/paper14.pdf)

11. VulkanSceneGraph (https://github.com/vsg-dev/VulkanSceneGraph)
12. Mikhaylyuk M.V., Kononov D.A., Loginov D.M. Situational modeling in virtual envi-

ronment systems // Scientific service on the Internet: proceedings of the XXIII All-Russian
Scientific Conference (September 20-23, 2021, online). — Moscow: Keldysh Institute of Ap-
plied Mathematics named after M.V. Keldysh. – 2021. — pp. 236-243 [in Russian] (doi:
10.20948/abrau-2021-1) (https://keldysh.ru/abrau/2021/theses/1.pdf)

https://registry.khronos.org/OpenGL/specs/gl/glspec46.core.pdf
http://www.gctc.ru/media/files/Periodicheskie_izdaniya/ppk_2020_4_total_37/5_stat.a_mihailuk_pq.pdf
http://www.gctc.ru/media/files/Periodicheskie_izdaniya/ppk_2020_4_total_37/5_stat.a_mihailuk_pq.pdf
https://unigine.com/
http://sv-journal.org/2022-4/02/en.pdf
https://www.paraview.org/solutions/
https://sv-journal.org/2021-1/09/en.pdf
https://core.ac.uk/download/pdf/51197608.pdf
https://www.khronos.org/registry/vulkan/specs/1.3-extensions/pdf/vkspec.pdf
https://www.khronos.org/registry/vulkan/specs/1.3-extensions/pdf/vkspec.pdf
https://gpuopen-librariesandsdks.github.io/V-EZ/
https://ceur-ws.org/Vol-3027/paper14.pdf
https://github.com/vsg-dev/VulkanSceneGraph
https://keldysh.ru/abrau/2021/theses/1.pdf

13. Sanzharov V.V., Frolov V.A., Galaktionov V.A. Survey of Nvidia RTX Technology //
Programming and Computer Software. – 2020. – Vol. 46, No. 4. – pp. 297–304 (doi:
10.1134/S0361768820030068)
(https://link.springer.com/article/10.1134/S0361768820030068)

14. Timokhin P.Y., Mikhaylyuk M.V. An Efficient Technology of Real-time Modeling of
Height Field Surface on the Ray Tracing Pipeline // Programming and Computer Software. –
2023. – Vol. 49, No. 3. – pp. 178–186 (doi: 10.1134/S0361768823030064)

15. Lefrancois M.-K., OpenGL Interop, NVIDIA DesignWorks Samples
(https://github.com/nvpro-samples/gl_vk_simple_interop)
16. Lefrancois M.-K., OpenGL Interop - Raytracing, NVIDIA DesignWorks Samples
(https://github.com/nvpro-samples/gl_vk_raytrace_interop)
17. Vulkan Samples, OpenGL interoperability, The Khronos Group. – 2020-2023.
(https://github.com/KhronosGroup/Vulkan-

Samples/tree/main/samples/extensions/open_gl_interop)
18. OpenGL Extensions (https://registry.khronos.org/OpenGL/extensions/EXT/)
19. Vulkan Extensions (https://registry.khronos.org/vulkan/specs/1.3-

extensions/man/html/)
20. Overvoorde A. Vulkan Tutorial. – 2023. (https://vulkan-

tutorial.com/resources/vulkan_ tutorial_en.pdf)
21. Lefrancois M.-K., Gautron P., Bickford N., Akeley D. NVIDIA Vulkan Ray Tracing Tu-

torial (https://nvpro-samples.github.io/vk_raytracing_tutorial_KHR/)

https://link.springer.com/article/10.1134/S0361768820030068
https://github.com/nvpro-samples/gl_vk_simple_interop
https://github.com/nvpro-samples/gl_vk_raytrace_interop
https://github.com/KhronosGroup/Vulkan-Samples/tree/main/samples/extensions/open_gl_interop
https://github.com/KhronosGroup/Vulkan-Samples/tree/main/samples/extensions/open_gl_interop
https://registry.khronos.org/OpenGL/extensions/EXT/
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/
https://vulkan-tutorial.com/resources/vulkan_%20tutorial_en.pdf
https://vulkan-tutorial.com/resources/vulkan_%20tutorial_en.pdf
https://nvpro-samples.github.io/vk_raytracing_tutorial_KHR/

